Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 25, 2026
-
Free, publicly-accessible full text available April 22, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 4, 2025
-
Transportation infrastructure experiences distress due to aging, overuse, and climate changes. To reduce maintenance costs and labor, researchers have developed various structural health monitoring systems. However, the existing systems are designed for short-term monitoring and do not quantify structural parameters. A long-term monitoring system that quantifies structural parameters is needed to improve the quality of monitoring. In this work, a novel Transportation Rf-bAsed Monitoring (TRAM) system is proposed. TRAM is a multi-parameter monitoring system that relies on embeddable backscatter-based, batteryless, and radio-frequency sensors. The system can monitor structural parameters with 3D spatial and temporal information. Laboratory experiments were conducted on a 1D scale to evaluate and examine the sensitivity and reliability of the monitored structural parameters, which are displacement and water content. In contrast to other existing methods, TRAM correlates phase change to the change in concerned parameters, enabling long-term monitoring.more » « less
-
Large scale networks of intelligent sensors that can function without any batteries will have enormous implications in applications that range from smart spaces to structural and environmental monitoring. RF tags present an amenable platform for sensor integration as the backscatter communication offers low energy cost of communication. Current RF tags either use extremely low-power sensors or perform tasks of tag localization and identification based on the strength of the backscatter signal. We present a technique for estimation of amplitude and phase of the tag-to-tag channel that can be performed with very limited computational and energy resources. This enables monitoring of the interactions between tagged objects and activities around tags, as well as assessment of a variety of engineering structures. Experimental results demonstrate high resolution in the amplitude and phase channel measurement at a distances ranging from 22 cm to 1.34 m.more » « less
An official website of the United States government
